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STRESSES IN AND GENERAL INSTABILITY 6F MONOCOQUE CYLINDERS WITH CUTOULS
III — CALCULATION OF THE BUCKLING LOAD OF CYLINDERS
WITH SYMMETRIC CUTOUT SUBJECTED T3 PURE BENDING

By N. J. Hoff, Bruno A. Boley, end Bertrem Klein
SUMMARY

A ptrain-—energy theory is developed for the calculatien of the
buckling load in pure bending of reinforced monccoque cylinders which
have a symmetric cutout on the compression side and buckle eseccrding to
the generdl instability pattern. Computations are carried cut for the
cylinders tested earlier at the Polytechnic Institute of Brocklyn
Aeronsutical ILeboratories. The thearetical curve is similar in shepe to
that obtained experimentelly, but the thsoretical values are consistently
too high. The deviation is 39.3 percent in the worst case.

“INTRODUCTION

General- ingtability is defined as the simultaneous buckling of the
longitudinal and elrcumferential reinforoing elements of a:monocoque.
cylinder together with the sheet attached tu them. The general instebll-
ity of reinforced circular monocoque cylindere subjected %0 pure bending
has been investigated in soms detail at Polytechnic Institute of Brooklyn
Aeronautical Laberatories’ and Guggenheim.ﬁeronautical Latoratory,
California Ingtitute. of Technelogy,under the sponscrship of the National
Advisory Committee for Asronautics (referencee 1 to-8). This theorstical
ard experimental work deslt with complete cylinders not having cutouts.’
It can be expected. that a cutout decreases the buckling load in general
instability since part of the elastic support is lost . when a portion of
the structure is removed. This conJecture was verified in recent exper—
iments carried out at Polytechnic Institute of Brooklyn Aeronsutical
Laboratories which dealt with the general instability of and the stress
distribution in monocoque cylinders with a symmetric cutout. Reference -
9 contalins a report on these experiments. A theoretical study of the-
stress distribution in the cylinders is presented in reference 10.
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Reference 11 deals with an experimentel investigation of cylinders having
a side cutout. o

In the present report the buckling lcad of reinforced monocogue cyl-—
inders with & symmetric cutout on the compression side is calculated by
strain-energy methods. The deflected shape &t buckling is represented
by a full sine wave extending over the length of the cutout in the axial
direction and by the first seven terms of a Fourier expansion in the cir—
cumferential direction. The circumferential coordinate is measured from
the edge of the cutout and the length of the interval in which the
Fourier series is defined is considered as ome of the parameters of the
problem. The boundary conditions at the end of the interval determine
four of the seven coefficients of the series while one of them i1s inde—
terminate as in all buckling problems. The remaining two coefficients,
as well es the wave—length parameter, are calculated from the requirement
that the buckling load be & minimumn.

The following strain—energy quantities are considered: radial and
tangential bending as well as torsion of the stringers; bending of the
rings in their plane; and shear in the sheet. The extensional strain
energy stored in the sheet 1s taken into account by adding en effective
width of sheet to the stringers and the rings. In the calculation of
the work of the extermal forces a linear force distribution is assumed
in preference to & linear strain distribution in bending. Thls assump—
tion is in better agreement with the experiments described in reference J.

The buckling load is calculated from the reguirement that the strain
energy correspcnding to the transition fram the unbuckled into the buck-
led. shape be equal to the work done by the spplied lcads. The minimm
value of the buckling load is found by assuming the circumferential wave
length to be equal to the length of some integrel number of stringer
fields, calculating the values of the two Fourier coefficients that min—
imize the buckling load in the case of the assumed wave length, determin—
ing the buckling load, and comparing it with valuee obtained on the as—
sumption of other different wave lengths. The final resulte of the
numerical work are presented in the form of buckling loads calculated for
three different circumferential wave lengths for each of the three sizes
of the cutoute tested. In each case these buckling loads define a minl—
mum. All the calculations were carried out for one-half the cylinder
because of the symmetry of both structure and loading.

For a substantial share in the numerical work the suthors are in-—
debted to Bermard Levine. The iInvestigation was conducted under the
sponsorshlp and with the financial aid of the National Advisory Cammittes
for Aeronautics.



NACA TN No. 1263 3

&,80,8),82,23

A

bel;bEJb'S

S 8w op oo

G2

eff

%Y

Istry

Istrt

SYMBOLS

Fourier coefficlernts _
cross—sectional ares of & stringer plus its effective width
Fourier coefficilents

geometric fectcr in torsiomal rigidity GC

width of panel mesasured alcng the circumferencs

Young's modulus

shear modnlus

shear modulus of sheet covering at zero compressive losd
effective shear modulus

index Indicating posilticn along circumference

monent of inertis

moment of inertia of ring section and lta effective width
of sheet for bending in its own plane

moment of inertia of stringer section and lts effective
width of sheet for bending in the radial direction
(ebout a tangential axis)

moment of inertia of stringer sectlion and 1ts effective
width of sheet for bendiag in the tangential dirsction
(sbout & radial axis)

index indicating positicn along axial direction

trigonometric functions of @, x, n, 2, b

length of cutout |

distance ﬁetween adjecent rings

number of rings involved in the falilure

applied bending moment; function of n, a, b sappearing in
the strain energy of bending in the rings
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Moy applied bending moment at general instabiliiy

n parameter defining the length of the general instebility
in the circumferential direction

N = 0.0275 [{enr/d) + 1]

D1y P2 polynomial functions of a _and D

Pcr force carried by one of the stringers at the odge o the
cutout at goneral instability

Py force carried by the ith stiinger

Q function of x appearing in the shear strain enorgy

r ' radiuve of cylinder

R function of ‘9, n, a, b appearing in the shear strain
energy

8 number of stringers involved in one-halfl the general-
instabllity bulge

S total number of stringers 1n the cylinder

% thickneas of sheet covering

U strain energy

Up strain energy stored in the rings because of bending (of the
rings) in their own plane

Ugh . Straln energy stored in the sheet covering because cf

: shear T
Ugtp straln energy stored in the stringers because of bending
r about a tangential axis

Ustrt - 8traln energy store. in the stringers because of bending
about & radial axis

Uy, strain energy stored in the stringers because of torsion

2w effectlve width of sheet

Wy radial displacement of & point or a ring or a stringer
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Vi tangential displacement of a point on a ring or a stringer

W work done by the appliéd Porces

x coordinate measuring distance along the axis of the cylin—
der from the edge of the cutout

2a cutout angle

ar, o coefficients used in the calculation of the shear strain

' in a panel due to displecements of its cOmers

v4 shear strain

ts) distance of meutral axis from horizontel dlametsr of cyl—
inder

€ noxmal strsin in s stringex

€Ecp ) buckling strain ef a panel of sheet covering

QP anguler coordinate with origin et the edge of the cutout

TEE TEFLECTED SEAFE

In the experiments described in reference G it was observed that at
buckling the wave length in the axial direction was almest exacily equal
to the length of the cutout. For this rcason it 1s assumed in the theoxy
that the rings bordering the cutout are rigid in their plesnes. The cylin—
der is then thought of as being cut through these rings end the external
moments are applied in the secticns. With the notation of figure 1 the
distorted shape of the strirgers ls essumed to be

' wr ='a.c'}(k_-,_/2)[l-- cos (2rx/L) 1 = acgk; gin2 {nx/L) (1)

where Wy 1s the radial deflection, and k; = proportionf_lity factor
depsndent uvupon the angle @,

The circumferential wave pattern could not be determined with suffi-—
cient accuracy in the tests. It is assumed, therefore, to be represented
by the follcwing trigonometric expression:
vy = kp[(ag + a1 cos np + &5 cos 2np + as cos 3nP + by sin np

+ bz 8in 2n9 + ba sin 3ny) ] (2)
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where .kz ' .is & proporticnality factor .dependent upon. X. (Because of
equation (1) kp, is s&in2® (:tx/L) ) Equa.tion (a) is valid._. provided

a

O<cp<:t/n ' (2a)

When © is greater then .n/n, - the deflect:}.ons are aseumed. to be zero.
Consequently =n is the parameter defining the length of the bulge.

Since in thin rings extensional deformaticns involve much more
strein energy than do bending deformstions, the deflections of the rings
ars agsumed to be inextensional. This assumption determines the tangen-—
tial displecements Wi when the radiasl displacements are given. The

connection between the two was developed in reference 3 and stated in
equa.tion (ha) o:f' that reference.

—a‘ft/acp (3)
It follows from equations (2) and (3)'tha.t- wi may be taken as
= kol-eo® = (a1/n) sin &p — (az/2n) sin 2np — {ag/3n) sin 3n9
+ (by/n) cos np + (bz/2n) cos 2o + (bz/3n) cos 3npl (k)
provided
0<p < :t/n
Because of. the symmetry cf both structure and loa.ding these expres—
sions are equally applicatle when the anglie ¢ 1is measured from elther
one, of the edge stringers. An obvious limitation of the formulas is -

¥ I

'a.+(sr/r§5!rc | - (5)

If it is reguired that tlhere te a smooth transition between the
bulge and the nendistorted part of the cylinder at ¢ = {%x/n), then the
following conditions must be satisfiad:

(l) The ta.ngentia.l displacement must venish:

- wg =0 . .w%when @=x/n .. ., ..~ .5 (6a)

(2) The radial displacement must vanish: - B

Wp=.0 . when @ =x/m . . . . .. = (6p)

(3) There must be no. sudden change In the direction of the tangent:



NACA TN No. 1263 1

dvp/0p =0 whem @ ==x/n - (6c)
(4) There must be no sudden change in the curvature:
3%,/32 =0 when @ =x/n (6d)

The methematicel forrmlation of these requiremsnts was discussed in
detail on pages 10 and 11 of refersnce 3. The four conditions contained
in equations (6a) to (6d) esteblish four relationships between the
Fourier coefficients in equation (4) and make it pcssible to express eny
four coefficients by means of the remaining three. If ag, &3, and b;
are retained as the basic paramsters s bthe following four egquations are
obtalned:

‘ax = (8/5)ay — (9/5)a, : A
az = {3/5)ay — (8/5)2c
: . (1)
bz = (16/5)by + (18/5)xac
b = (9/5)by + (12/5)ma, )
¥With the notation
(21/a0) =a end  (b/ac) = b (8)

and after substitution of the expressions contained in equations (7),
e combination of equations (1) and (2) gives for the radial displacement

Wy = agky sin2 (mx/L) ‘ (9)
where | |
ky = [1 + & cos np + (L.6a — 1.8) cos 2np’
+ (0.6a —0.8) cos 309 + b 8in np + (3.2_b‘+ 3.6x) sin 2ng
o+ (1.86 + 2.4x) sin 3ng] ' \ o {9m)
Similerly ;bhe tengential displacement becomes |
Wy = ajkg sin? (mx/L) (10)
kg = (1/n)[-np — & sin np — (1/2) (1.%2 — 1.8) sin 2ngp
— (1/3)(0.6e — 0.8) sin 309 + b cos np + (1/2)(3.2b + 3.6x) cos 2np
+ (1/3)(1.81; + 2.4x) cos 3ngl (10a)
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Equations (9) and (10) dare valid, provided

0<o<n/n (101}

When ¢ 1is greater then =x/n the deflections are asstmed to vanish. A

typical example of the deflections et buckling irn the plane of the rings
is ghown in figure 2. :

CALCULATICN COF THE STRAIN EFERGY

Strain Energy Stored in the Rings

The strazin energy stored 1n half of eny ring is

v /o) | @t f /n[w;« - (Penfor®) | 2 ap (11)
[o]

in accordance with equations {c) on page 11 and (7) on page 12 of refer—
ence 3. Substitution of the value of wr from eguation (9) and suxme~

tion over ell the rings contained in the axial wave length yield

a, ] . ®/n
Up = (1/2) {a023/r®) 2% _(EI)r_s_in4 (foﬁL) l? {1 +a(l - n®) cos oy
J= ! '

+ (1.6a — 1.8)(L ~ 4n®) cos 2n9 + (C.6a — 0.8)(1 — 9n®) cos 3np
+ b(L —~n%) sin up + (3.2b + 3.6n)(1 ~ kn®) sin ong

+ (1.80 + 2.4x) (1 — 9n%) sin 3n9pl % ap (12)

where Uy is the strailn energy stored in all the rings in one—half of
the cylinder. The subscript J refers to the individual rings the
total number of which i1s m within the length of the cutout. If the

integration is carried ocut and the value of the definite integral is de~—
noted by M 1t i1s poasidble to write
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oM = [x + 10.053096(1 — 9n2) + 206.01005(1 — kn?)® + 90.303387(2 - 9:&2)2
~ 18.095573 (1 ~ ¥®) (1 — 90®)]
+ a [~9.0L77868(L — kn2)2 — 1.5079645 (L — 9n3)2

+

30.159289 (1 — n2) (1 — kn®) + 18.095573 (2 — 4n®) (T — 9%)]

+

2.4(1 — %) (1 - bn®) ~ 3.68(1 — k%) (1 ~ )]

+

+ 82 [(x/2) (1L — n®)2+ 4.0212386(1 — 4n?®)2 + 0,5654867(1 — n=F)

+ 52 [(n/2) (1 - n2) 2 + 16.084955(1 — 1n®) % + 5.08938(1 — 9n%)Z]

+ &b [6.5(1 - n2) (1 - 4n®) + 3.84(1 = ¥n2) (1L — 9n3) ] _ (13)

The strain energy is therefore

18

U, = (1/2) (8,%/x° )M (EI),. oin* (Qc:J/L) (1h)

J

When the bending rigidity (EI)r 1is the same fer all the rings, the

sumation ylelds a result in closed form as was shown in the appendix
of reference 12:

"l"'.r
-yl

m .
> sin® (zx 3/1) = (3/8) (mf 1) (15)
J:

~

provided :
m>1 {(15a)

Wher m = 1 +the value of the summstion is 1. The strain erergy of
bending stored in &1l the rings 1s conssquently

Ty = (3/16) (20 /r ) (ED)x(m + 1)M ) (16)

In equation (16) the value of M depends upon n, a, and b. Values of

M computed for n =4, 2.666. . ., 2, 1.6, 1.333. . . carresponding to
s =2, 3, b, 5, 6, respectively, are listed in teble X. These values of
n correspond to buckling petterns in which the bulge ends at one of the

16 stringers containsed in the specimens tested.

b [A(L —n2) + 2.5 @ — 9n%) + 113.69784 (L — bn®)" + 42.636690(1 ~ 9n3)2
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Strain Fnergy Stored in the Stringers

The straln energy stored in the stringers because of bending in the
radial dirsction is L

luml

f.
Uetry = ) (1/2) EDetr, | (/i) ax ()

where the summation is extended over sll the stringers contained in one—
half the cylinder. Substitution of the value of w, from equation (9)

into eguation (17) and integration yleld
L

Ustry = Z <l/2) (ED) gtry JC 8o k12(2n%/1%)% cos® (zax/L) ex

= ao” (“4/1-8) }':klz (EI)s’crr (18)

The moment of inertia Tggr, of the stringer varies around the

circumference of the cylinder because the effective width of the sheet
to be added to the gtringer section changes. The values of Igtr, Wwere

determined,for each of the cutout sizes investigated, according to the
principles atated in reference 1. Similarly k,® was computed for each
stringer.

The astrain energy stored in the stringers because of bending in the
tangential direction is :
S L
Sﬁ e 2,2
Ustry = ) (1/2) (EDetry | (3 wg/ox7) dx (19)
‘o

—t

where the summation is extended over all the stringers contained in one—

half the cylinder. With the ald of equation (10) the strain energy can
be given as

Ustrg = ao” (/L") S—‘ksz(EI)s'brt - - (20)

Since both kg and Igtry very from siringer to stringer the summation

indicated in equation (20) was evaluated numerically for each cutout size
investigated.

The strain energy stored in ithe etringsr because of torsion is

L
Usg =L (1/2)_Gc[ (1/)% [ (3%p) /(3x ) T ax (21)
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In this equation’ (1/r)(d2w;)/(dx dp) Is the unita.ngle of twist of

the stringer, and the Summation must be carried aut. over all. the

. 'stringers contained in onse-hslf the cylindér. In the expression for
the Saint-Venant torsional rigidi ty,-

C = 0.14a% : (21-)

since the test specimens were provided with square sgection atriﬁg’ers
of edge length a. Differentigtiaon gives

(2w2)/ (3% 30) = agky (¥/L) ain (2rx/1) (22)

L4

_Where .
ks=n[-asinng - (3.2a - 3.6) sin 2ng - (1.8a - 2.4) sin 3mp'
+ b cos np + (6.11-13 + Te2t) cos 2nP + (5.4 + 7.27) cqs'3ncp].._ (22s)
Hence the stra.,:.l.ﬁ‘: _enérgjf of torsio_ﬁ s ‘.
Ui = ag2(e/h) [lee)/(12%]] ) k® - (=)

where the summation is extended to include all the stringers contained
in one-half the cylinder. Tie term GC is before the summation sign
in equation (23) since according to Sdint Venant the variation of the
torsional rigidity, caused by the different umounts of effective
width of sheet, is so small that it was considered rermissible to
assume GC a.constant. "Again a numerical eveluation of the summa-

tion was cdarried out when the strain energy was calculated.

Strain Energy of Shear Storséd in the Sheet

The shear strain ehergy in a pansl is taken as being proportional
to- the average effective shear modulus Ggpp multiplied by the aquare
of the average shear strain 7y in the panel. The latter is calcu-
lated from the displacements of the four corners of the panel as was
done in reference 3. Then the total strain energy of shesr stored
in the sheet is - B ' -

Uy = (1/2)272 Gopp L, Bd . (2h)

where the summation extends over all ihe panels contained in one-
half the cylinder. - - - T
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The value of the effective shear modulus depends upcn the magnitude
of the compressive strain in the penel, as was shown in reference 13.
The empirical formmle recommendecd there for the computaticn of Gegff is

Oupe/ag = (1 - Mo (/o) g (25)

where

N = 0.0275[2#(r/d) + 1] (z58)

and Go 1s the shear modulus in the absence of compressive stresses,
€ the compressive straln prevailing in the panel, and €gp the com—
pressive strain whern the panel of sheet buckles.

Since the dlsplacements in the axial direction are emell and of the
second order, the displacements of the cormers of ths panel need be in—
vestigated only in the plene of the rings. The effect of rotation of
the ring upon the shear was neglected. Formules for the calculation of
the shear strain frum the displacements of the corners were developed in
reference 10 and were presented in figure 23 of that reference. With
the notation and sign convention of figure 3 of the present rspoxrt the
shear strain 1s

-
/

Y = (ar/Ll)'[ Ti,3 7 Y¥iea, g —'wri,JTi i #ri+l:J+lJ

= (at/T1) iwti,J + wt1+1,J AT S P wti+1,J+1J (26)

where the first subscript refers to the circumferentisl, and the second
to the axjal location of the corner of the panel. In reference 1li the
values of the numerical factors opr and o Wwere determined. Simpii-
fied formules were given on page 27 of reference i which represent
these factors very asccurately when the engle ' d/r is of the order of
megnitude found in monocoque fussleges. The formmles can be written in
the following slightly changed form: '

(1/10) (a/x) = (1/10) (2x/S)

az‘ =
(a7
ay =~ 1/2
Substitutions yield
. m 81 L
Uan = (1/2)(t/12)G, ) Q5 ) (Cere/Go); By (28)

J=o i=o
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.fhare Q is 2 function of =x cn.ly a.ncl R a function of ¢ only. The

—
summaticn > Q gives a res‘ult in closed. form:

m .
JZ Qy = Y"(sin [(:t.j)/(m+l)]—-sin [z (3+1)/m+ 1)]1
=0 j=o _ _
= (1/8)¥(m + l) f}_-—- cos [(2:r)/(m+ 1) ]} o oo ._“(?9)
provid.ed ‘. ‘
| N (250
When m =1,
TQ‘ 2 S (29b)

The results of the summation were listed. in eq_uations (24) of reference 3.

The meaning of the gymbol - R 1is
. . . a . 2 i .
R'= ag? [«:zr(kl,i -._k1,1+1) - ﬁ't(ks,i + ks,j_+1)] - (30)

The values of I¥;,i, kj,i+1, ka,i, end ks,i+1 are obtained from those
of ky and ks (equatiors (9a) and (10a)), respectively, by replacing

the angle ¢ by 2ni/Ss or 2r(i + 1)/s:
ky,1 = [1+a cos (2xmi/s)+ (1.6a — 1.8) cos (kmni/s)
+ (0.6a = 0.8} cos (6;m1/5) + b sin (2xni/S)
+ (3.2b + 3.6x) sin (bxmi/S) + (1.8 + 2.kx) sin (6mmi/S)] (302}

kg 3 = (1/n)[—(2mmi/S) — a sin (2mi/S) — (1/2)(1.6a — 1.8) sin (4mni/S)
— (1/3)(0.6a — 6.8) sin (6mni/S) + b cos (2mi/s)
+ (1/2)(3 2b + 3.6xn) cos (Bmni/S) + (1/3)(1.8b + 2.4x) cos (Gxni/s)]
(30‘n)

In the calculations the R quantities were summed up numerically.
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' WORK DONE BY THE EXTERNAL FORCES

It was observed 1n the experiments described in reference 9 that
the stress distribution was not linear im the cutout portion of the cyl-—
inder, although the deviations from linearity were not large as a rule.
A good approximation to the experimental curves was obtained by assuming
e linear force distribution which is not equivalent to & linear stress
distribution because of the varying amount of effective aheet added to
the stringer section. Strain-distribution curves calculated on the as—
sumption of a linear force distribution are compared in figure 4 with
stralns measured in the experiments. The sxpression used for the calcu—
lation of the force acting upon the I1th satringer is

Py = Py {;os fx + (2ni/8) 1 + (S/r)}/[cos o +_(5/r)] (31)
vhers DPer 1s the chmpressive force acting upon the stringer at the

edge of the cutout, and & 1is the distance of the neutral axis frem the
horizontal diameter of the cylinder. .

The work dome by the external forces acting upor the atringers is
equal to the summation of the forces times the displacement of the points
of application of the fcorces. The displacements of theame points are
equal to the shortening of the distence between the end points of the
stringere during buckling. Ccnsequently the work Is

L _ |
V= (1/2) ) B f [(dwp/3x)2 + (3wy/3x) 3] ax (32)
o} .

where the summation has to be extended over all the stringers contained
in one—half the cylinder. Substitutions and integration yileld

L _
W= (1/2)&5??1(::/1,)2 (k= + Xg°) f sin® (2mx/L) ax
— o
= (1/8) (/L) Pep 802 ) (Py/Por) (ka2 + KoP) (33)

The summation in the right—hand member of equation (33) was carried out
numerically. ‘
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CALCULATION OF THE BUCEKLING LOAD

. The buckling condition is
’ Ur + Ustrr + Ustr.b + Ut + UBh =W (3‘-’-)

where the values of the quantities must be taken from eguations (16),
(18), (20), (23), (28), and (33). Equation (34) was solved for Per,
contained in W, by the use of ths following procedure:

First, a value of n was assumed corresponding to & circumferen—
tial wave length extending over an integral number of stringer fislés.
With this velue M, k;, ks, and k4 were computed. Next, FPer was
assunmed. This assumption permitted the caleulation of the effective .
width of sheet and consequently the moments of inertia of the stringers
as well -as Geff/G' . The summations were then caerried out. Substitution
of the results in equation (34) yields a polyncmial of the second degree
in a end b in the left—-hand member, and another poclynocmial of the
second degree in the right—hand member, the lstter mmltiplied by FPer.

Solution for FPgr gives a fraétion which can be represented symbolically
as . .

ri(a,b)

Por = 5olast) (35)

vhere p: &nd p- are second—degree polynomisls in & and b. The
values of & and b, the parameters defining the buckled shape, must
be chosen go as to make Pgpr a minimm. It is known Prom the calculus

that P,y can be minimized by setting

P = pi(a,b) _ 3p, /da _ 3py/db
or - pz(a,b) - dp2/da —'szfa'b

The pertial differential coefficlents of the polynomials py- and Pa
ere linear functicns of a apd b. Eguations (36) represent three con—
necticns between Per, &, and b. They were solved by a repidly con—

verging trisl—and-—error method. First, ‘a a:;d b were calculated from
the linear equations with the ald of an assumed value of "Per. The val—

ues of a and b so determined were then substituted into the quadratic
expression for Per. The procedure was repeated with the aid of new as—

sumptions for Per until the value obtained from the quadratic expres—
sion waes close enough to the assumed value.

(36)
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When the value of DPgp oObtalned in these calculations differed

materially from that assumsd at the outset, the moments -of inertia and
the effective shear modulus had to be calculated agaln and the entlire
procedure repeated. All the calculations were carried out with different
values of n. The buckling loads corresponding to these different values
were compared, and the smallest one was considered as the true buckling
load. Detaills of the procedure may be seen from the numerical example
given in the eppendix.

COMPARISON OF THECRY AND EXPERIMENT

_Numerical calculations were carried out for the cylinder shown in
figure 1 for all threeée of the sizes of the cutout indicated. 1In each
case the minimum value of the buckling load DPcy wes obtalned for

= 2.666, . that is, when the bulge extended over three stringer flelds.
A typical buckling pattern is ‘shown in figure 2. It corresponds to a
cylinder having & 90° cutout. S '

Some details of the results of the calculations are presented in
table II. The bending moments corresponding to the minimum buckling
load are plotted against the slze of the cutout in figure 5, which also
contains the observed bending mment &t buckling taken from the experi—
mental report (reference 9).

CONCLUSIONS -

A strain—energy theory has been developed for the calculation of the
buckling load in general instability of reinforced circular monocogue
cylinders which have a symmetric cutout on the compression side end are
subjected to pure bending. When the theory was applied to the test cyl—
indsrs of the earlier experimental report it was found that at bucklin§
the bending moment applied to the cylindsrs having a h‘ 90 and 135
cutout was 69.3, 64.8, and 4k.5 percent, respectively, of the bending
moment under which the geme type of cylinder buckled when there was no
cutout. The corresponding values obteined in the eXxperimental investiga—
tions were €6, 47, and 31 percent when based on the experimental averages,
and 68.2, 50. 6, and 31 3 percent when based on the highest buckling loads
observed i

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., July 8, 19Lé.
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APPENDIX

As a numerical example of buckling load determination, calculations
are presented which correspond to cylinders 19, 20, and 23 of the test
series described in reference 9. The followlng characteristics of these
specimens will be needsd for calculation:

Radiuve, r . . . . . ,..._.......'.'.;......in...lO
LengthofcutoutL............_..‘...-....in. 19.29
Distance between adlacent rings), Ly + « o <« « « » » « » « » in... 6.43

Number of rings contained in the length of cutout, m . . 2
Ring cross section . . . - . . . . 1/8 by 3/8 in, (2hsr aluminum a.lloyi
Number of stringers in fu...l portion of the cylipnder, S. . . . . . . 16
Stringsr spacing along circmnfnrence, d.. . « « In., 3.927

Stringsr cross section. . . . . in. . .3/8 X 3/8 (ELI-S—‘I' aluminum alloy)
Sheet covering thickness, t . . : . . . . in. 0.012, . {245-T Alclad)
Cutou'ba_ngie,Ea.......'.................d.eg..90
Young!s modulus, E .................pexi..J.osx_m‘5
Stringer shear modulus, G . « v v 4 = « « o oo .« . PSi.. . 39X10
Sheet shear modulus &t zero conpressive lcad, Gg . .psl . . 3.9 X 10°

Computations are firet given corregponding to an assumed integral
number s of stringer fields, say & = 3, included in the bulge on cne

slde of the cylinder. The qozresponding value of n can be obtained
from equation (Al)

= 5/(2s) (A1)

In this case n = 8/3 = 2.666 . . . Substitution of this value in equa—
tion (13) gives . ) -

M = 180,623.6027 + 8,829 .585%a + 93,272.2882b.
+ 1,999.4498a2 + 12,140.0843b2 + 2,892.27684kab _ (A2)

as can be seen from table I..- Substitution in equation (16) yields:
= (3/16) (252/1000) (10.5 x 10% x 80.35 x 10°S)(2 + L)M  (43)

wheré the moment of inertia I, of the ring cross section augmented by
an effective width of sheet (taken equal %o the width of the ring) is

» =, (1/12)(0.125 + 0.012)%(0.375) = 80.35 x 10 © in.®  (ak)



18 NACA TN No. 1263

With the aid of equation (A2), the ring strailn ensrgy becomes:
Up = ao-(85,718.0013 + 4,190.2299a + kk,263.9500b
+ 9h8.8729a2 + 5,761.2834b2 + 1,372.5799ab) (a5)

The functions k;, kg, k4 can be calculated from the assumed valus

of n.. For this purpose it is convenlent to arrange the trigonometric
functions needed and their coefficients in tabular form, as shown in
- table III. :

In this table the first three rows contein the trigoncmetric func—
tions of the angle .@. ‘'As only values of k;, kg, kg which correspond
to integral numbers of stringer fields will be used in the summations to
be evaluated later, the angle ¢ was replaced by its egquivalent (2xi/S),
where 2r/S is the angle subtended by one etringer field.

The third, fourth, and £ifth rows contain the coefficlents of the
trigonometric functions appeering in each column above them. These coef-
ficlente are different for k;, ks, and .k4, and can be obtained from

equations (9a), (10a), and (22a), respectively.

The value of Xk; for 1 =0 1is obtained by multiplying the expres—
sions appesring in the same columm in the first and fourth rows, and by
adding the resulting eight products. Products of the elements of the
second and fourth rows will lead to the value of k; for i =1, and
aimilerly for all others. The results are tabulated in table IV.

The next step is the assumption of the critical load P, . for the

purpose of obtaining the effective width of sheet 2w to be added to
the stringers, the moments of inertia of the stringers, the effective
shear modulus Gerg, and the shift of the neutral axis from the horizon—

tal axis of the cylinder &. From an assumed value of Pen = 3370.5 1b,

5 was found to be 2.4 in.; the other quentitles are listed in table V.
In table V column (2) 1s obtained from equation (31); colummn (3) by di-
viding cblumn (2) by E = 10.5 x 10° psi. Columcs (%), (5), and (6) can
be most conveniently obtained by the use of a previously drawn curve of
the strain e against the area Aeff Of stringer and effective width
combination. A curve of this type was used in the present calculations
end was constructed with the aid of the following formula for effective
widths . . . : :

-

0= (1/) (/) {0.30 + 1.535 [ (6/a) (ex = 0.30)x™ 2 77}
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Columns 7} -and (8} were calculated according to the principlee stated in
reference 1. In column (9) the V&J.I_IZ of the buckiing load of the sheet
€., was calculated to be 3.3° Columm (10) was obtained from

equation (25).

The strain energy stored in the stringers because of bending 1n the
redial direction is from eguation (18):

Ustr, = 20" Lr */(19.29) :} 10.5 % lO Y k1% Tgtr, (46)
i-o ‘

since the modulus E is constent for all stringers. The summation in—
dicated is the sum of the product of the values in column (7) in table ¥
for any value of i, .and the squarés of the quantity k; in table IV
for the same value of 1., Ugy,, 1is obtained by substituting colum (8)
for column (7) in table ¥ and ks for ki in teble IV. These opera~
tions yleld:

Ustr = Ustry, + Ustry = 2(102 882.5969 — 1, l&53 8391a
+ 53,374.56800 + 3,9J+5.3léoa2 + 7,242.3558b% — k09. 40658:::) (AT)

The torsional gtrain energy in the stringers conta.ins the smuma.ticn

y\k.;z as can be seen from eque.tion (23). This is the sum of the squares

of the values of Xk, given in table IV. The complete result for the
torsional strain energy was found to be: -

Uy = ao-(300,981.0280 + 25,092.1760a + 165,584.300b

+ 1,656.7116a2 +, 22,830.3864b2 + 6,4k26.610sDb) (A8}

Tks expression given in eguation (28) for the strain emergy duse to
shear in the sheet covering reguired the evaluation of the guantity -Ri.
This quantity, given in equation (30}, can be easily obtained if it 1s
noticed that the terms Iy, 1 — k3 i+1 and kg,i + ks,i+41 8re respec—
tively the difference and the sum of terms appeering in adjacent rows of
the k; and ks columms of teble IV. With the values of Gerf/Go
teken from table V and with op = 0.03927 and of = -0.5 from equation
(27) the shear strain ensrgy wes found to be:



20 NACA TN No. 1263

Ugp = 8o3(16,645.4078 + 6,416.0112a + 5,515.5294b + 1,1.80.0227a2
+ 1,232.0806b2 + 188.3523ab) (A9)
The work done by the extornal forces is glven in equation (33). Fach
term of the summation comiaingd Iin that equation is the sum of the squarss

of the velusy of & and k (table IV) multiplied by P3/P.,., which
can ve obvained from tabie V. The result of these calculations was:

W = Poyp 8,°(17.522003 - 2.594795a + 9.796509b
+ 1.1226682% + 1.426108b° - 0.429835aD) (A10)

The values of the strain gner?ies and external work taken from equa-
tions (A5), (A7), (A8), (A9), and (Al0) were substituted in eguation (34),
with the resuit:

8,°(506,227.034 + 34,244.,578a + 268,738,347

+ 7,730.92278% + 37,066.1019b" + 7,578.1357ab)

= 8y° Pop(17.522403 - 2.5947958 + 9.796509b

+ 1.422668a% + 1.426108b% - 0.429835ab) ' (A11)
According to'equation (36), equation (All)} was solved for Pgp, and the

numberator and denominator of the resulting expression were differenti-
ated with respect to a and b. The result is glven in equations (AL2):

-

3k, 24k 578 + 15,461.845ka + 7,578.1357b _ P
-2.504795 + 2.845336a - 0.129835b cr

> (A12)

268,738.347 + 7,578.1357a + 74,132.2038p _
9796509 - 0.1429835a + 2.852216D

Pch

These eguations were reduced to two linear equations in & and b by
assuming & value of Pey = 3770  and clearing fractions. These equations
were solved simulteneously for a end b, with the following result:

' = "3 |05’h’l

o
¥

(A13)
b = -3.21k2
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Substitution of these values in equation (All) led. to a new value of

Por = 3793 1b. This result was considered to be sufficiently close to
the originel assumption to meke it unnecessary to repeat the celculations
for this value of n.

Repetition of the entlre procedure for values of n coﬁesponﬁng
to s =2 and s = 4  gave Pgp = 11544 1b and P,y = 3902 1b, respec—
tively. The value PFPep = 3793 1b was the lowest of the three and was
therefors considered the true buckling load.
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8 n Conatent a b - a b ab

2 Y 6214952,2978 | 33194.130L | 322064,03)6 | 6969.3405 | 42066.8361 | 10160.6399

3 | 2.666... | 180623.6027 | 8629.5855 | 93272.2882 | 1999.4498 | 12140.0843 | 2892.2784

Ly o2 73562.5088 | 3W67T.1679 | 37945.9796 | 805.8186 | 4933.871 | 1151.0000

5| 1.6 35069.3603 | 1634.3002 | 18527.8397 | 388.6488 | 2405.8392 | 546.L166]

6 | 1.333... | 19654.0645 | B43.6000 | 10105.7565 eoa.wio 1310,0700 |  286,8150
RATTONAL ADVISORY

COMMITTEE FOR AERONAUTICS

£92T *ON NI VOVX -

154

. e e mr—n o .




TABIE 1T
Percent Mo Pamenﬁ
Size of Mop Mor difference} hlghest | dlfference
cubout s--—g-l- n a b P.. |oaloulsted| average | of experi-| experi-|of highest
(deg) experimental | mental mental | experimentel
average moment | moment
—— e —
5 2. _ 4 0.3011| -3.6903 | 13,564
3 7| 2.666...| =3.1734| =3.1720} 3,722 | 258,109 192,800 33.9 197,600 30.6
L 2 -2,7612| ~3.27101 3,875
g0 2 L .3417| —3.6809 | 11,544 :
) 3 2.666,..| —3.0541] ~3.2142| 3,793 | 187,216 135,800 37.9 146,000 28.2
i 2 ~2.72u81 —3.2831| 3,902
135 | 2 4 .39211 ~3.6881 | 14,549
| 3 {2.666...| -2,9556{ —3.2553| 3,847 { 18,471 89,500 43.5 92,200 39.3
Y 2 ~2,65101 ~3.3001] 3,956
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TABLE IIT
i Conatant %Ecnm cos -Qgii cos h—n-s’-d— cOB 6’;‘1 s8in aué‘i aln in;—d' sin -G—DS-“-i-.
0 1l 0 1 1 1 0 0 0
1 ' 1 1.047197 0.5 0.5 -1 0.8660255 | 0.8660255 0
o 1| 2.094395 0.5 —0.5 1| 0.8660255 | —0.8660255 0
Multip]ier ' ﬂ. 15\63 - O-& — b 302b e ligb +
for k, 1 0 1.8 0.8 3.6x 2.hx
Multiplier : 0.6b +| 0.2250 +| =0.3T5a ~0.38 + -0.0758 +
for X, 0 | -0.375 0.375b 21205750 | 09424778 0.3375 0.10
Multiplier 17.0666...b + | 4. bb + 22,6664 .48 { ~8.53330.08 + | =4.8a +
for k, o 0 |2,666...bp |60,3185780 60.3185789 9.6 6.4
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TABLE IV

fi ky kg ky
i0|-1.6 + 3.2a 3.0630528 +1.2b | 120.637166 + 34.13333...b
:1 124945177 ~ 0.9a + 3.637307T1b | ~2.10318072 - 0.5845672a ~ 0.3375b | —B2.164026 — §.699486a - 21,6b
ie ~8.6545177 ~ 0.7a ~ 1.505256Lb | ~1.19545133 — 0.06495191a — 0.2605b | 21.8k5kk5 + 5.080683 + b.533. ..
TABLE V _
‘w| @ (3) (8) G | © 1 @ (8) (9) | (10)
1 1 i _ €A € Aepr ew Latry Tatry, € feer | Gare/Go
o |3370.5 |3.21x10%] 21.k x 10*] 0.1505| 1.567| 2025 x 20°| 3,500 x 10% | 6.06 | 0.hg5
1 | 2215.815 | 2.1103 12.8 165 | 2.000 | 2340 . |10,000 3.88° | .562
2 853.75 | 0.8131 8,33 18781 3.927| 2392 - 62,-200. 1.312 | 745
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